Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

نویسندگان

  • Valérie Wolff
  • Anna-Isabel Schlagowski
  • Olivier Rouyer
  • Anne-Laure Charles
  • François Singh
  • Cyril Auger
  • Valérie Schini-Kerth
  • Christian Marescaux
  • Jean-Sébastien Raul
  • Joffrey Zoll
  • Bernard Geny
چکیده

Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schizophrenia Induces Oxidative Stress and Cytochrome C Release in Isolated Rat Brain Mitochondria: a Possible Pathway for Induction of Apoptosis and Neurodegeneration

Schizophrenia is a chronic and often debilitating illness which affects about 1% of the world population. Some reagents have been used to simulate schizophrenic disorders in laboratory animals, such as amphetamine and ketamine. Previous studies have suggested that reactive oxygen species (ROS) production, reduced levels of ATP, mitochondrial dysfunction and apoptosis are involved in the pathoph...

متن کامل

Schizophrenia Induces Oxidative Stress and Cytochrome C Release in Isolated Rat Brain Mitochondria: a Possible Pathway for Induction of Apoptosis and Neurodegeneration

Schizophrenia is a chronic and often debilitating illness which affects about 1% of the world population. Some reagents have been used to simulate schizophrenic disorders in laboratory animals, such as amphetamine and ketamine. Previous studies have suggested that reactive oxygen species (ROS) production, reduced levels of ATP, mitochondrial dysfunction and apoptosis are involved in the pathoph...

متن کامل

Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity

Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen spec...

متن کامل

Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity

Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen spec...

متن کامل

Curcumin Ameliorates Sodium Valproate Induced Neurotoxicity through Suppressing Oxidative Stress and Preventing Mitochondrial Impairments

Background and purpose: Curcumin is a natural polyphenolic compound in turmeric (Curcuma longa). Curcumin has potent free radical scavenger and antioxidant properties that could significantly reduce oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to valproate sodium induced tissue damage. This study investigated the protective effects of curcumin against valproate so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015